IdempotentMatrix: AnidempotentmatrixA,istheonethatsatisfiesA0A= A. The inverse of a matrix is denoted by the superscript “-1”. f��L�L Greene Appendix A. /Type /Page stream Matrix Algebra Topics in Statistics and Economics Using R Hrishikesh D. Vinod October 20, 2014 Abstract This chapter provides a review of certain matrix algebra topics useful in Economics and Statistics which can be implemented by us-ing the R software and … 76 0 obj <>stream 69 0 obj <>/Filter/FlateDecode/ID[<55E5D77A3D7DF6D6FB25B0593125C3F4><4E892D783380CD48A81F295753F0FA61>]/Index[63 14]/Info 62 0 R/Length 53/Prev 80255/Root 64 0 R/Size 77/Type/XRef/W[1 2 1]>>stream 2 0 obj << /Font << /F50 6 0 R /F54 9 0 R >> h�bbd``b`� $�c�`>$8���G&F�s YF��ƶ� ͜� /Resources 1 0 R 3�Ȳ�-��+©�D��嶄�B�&���=�V���>W`Fm���즄G�tuSD�i��`���Z�6�{�����ˈ����>/�OW�w)v��i���.�Q��I�E��w$+�#PO#E�d��փb"%�5GY�f��4'y�����?���'k0��3�W6�LZ5PqG�+���J� ��ƫJ��P��씗��! %PDF-1.3 and chapters 4, 5 of ? Contents 1 0 obj << H�$(��LtU�=\���z�KĽ�8���=7w���:�jW�G��4T��.]eՠ�U������1���vA���'�Ϡ�u�jO���@0I�j�ų! �W.Y���=Y�kt[;���0 ���K��7}r��u# ��. 2 Algebraic Manipulation and Application 2.1 Basic Algebraic Manipulation for Matrices Similar to the algebra manipulation of the scalar variable, there are also corresponding ma- Contact: Dr Steve Cook Swansea University Published February 2003 Issues in matrix algebra Introductory matrix algebra is a familiar component of undergraduate mathematical economics modules. /Parent 10 0 R h�b```f``�d`b``ud`@ �3�3��Z �{�,����d8�������p,�pZ��3iL � � � ���T``���Y��lI�J&7�K����viF �b�7ϡ� Z In matrix algebra, the inverse of a matrix is that matrix which, when multiplied by the original matrix, gives an identity matrix. '�X�u$C�`���$t�$��cz�u���\J]��(�5�V\յ���Nꃆ�� �+!NB�ң�7 V��3�#�%KQ:0)BQ�7u������H� =Fz�hZ�z�3Z0O���?�@}�����cX7ڛ$7�Rz��/��Q��U�iFe���'�$%26����p��a��6�TI�Z�m��dz���l�z�sF� /Length 971 %PDF-1.5 %���� , ? >> endobj Otherwise, it is uppertriangular. 0 /Filter /FlateDecode ��yM&��{�ȸ �8��K� ��E�ES. COURSE TITLE: MATRIX ALGEBRA FOR ECONOMICS COURSE CODE: ECON 2015 LEVEL: UNDERGRADUATE LEVEL (SECOND YEAR) NO OF CREDITS: 3 PREREQUISITES: ECON1001, ECON1002, ECON1003, ECON1003 (pre 2014), ECON1004 COURSE DESCRIPTION / RATIONALE: This course will provide economics students with the tools required to undertake mathematical Matrix and ensorT Algebra, Matrix and ensorT Calculus and ectorV Spaces analysis useful as a background for a course in Econometric Theory at the .h.D.P level. Recently, I have introduced two new elements to my teaching of this topic in a level 2 mathematical economics module. endobj ��+�׺2�J�Q��MY�X�}A�W��:cW�6Ng&_L)�*-I۽i��.�F�Bt��p� �ewGM��Z��k]�+��"�����p��N�`W�����}���w��)��A1�����R}Q���P�/}�ǒW����P���r6��H��[�|�_�[4�9L.�JtL�=yI�����8dN\���ޒ�Ƃ Most of the material is taken from Ap-pendix A of ? Hence, AA−1 = A−1A = I A matrix must be square to have an inverse, but not all square matrices have an inverse. If the zeros are above the diagonal, the matrix is lower triangular. :�8��|���}"��XV4_[��b���~Y�"�����}��<8D��u���e�Ǵ�߭�]i�}_j y���� x��XKo7��W踋`Y��m �$h�ȥ0r�{P%VbI�-���;|���(i]�(|0�����q`��&��g'ZCe'�������~Qr� �'W7A�j�Gm �|lQ6ӖF�x�Ђl��if-@���Nh�eD��s?�'�Q$��/���y�[ܜ3�]ܼC�D>N�dD��~�v��K+x�Bs&P'���!��:JJ�$Q3 �$WI@d��s��9NJ�4�2�=4�+Y��D��-�����J�J��!�:6-���pR��yE��LJq�R�f���UЕ�"M&ځtyb�I�H�_���|b�3A�2����J��x;1:��iɁ�W�����r͔��2aw�Dr{v�0r2�68�C �h�P��g�T0��'8�aF�3d�O��)5B�٨K�B�Aȉ�̨�pZ9�цlbZD�Z���RuE�P����a���K�B��/v�a�S �a The most essential results are given –rst. /Length 1864 /MediaBox [0 0 612 792] The first of these changes is the introduction >> creased use of matrix algebra in the economic theory underlying econometric relations. Xr�^ �˝��,\����"�;�'�[rd>�����I]m�����vr� �\����')�Q�%��U^���{�� ��q�pn�u����*�ս��Y��l {���M�d�[�rE��.$}�c�[-m}�p/�(�}�A���l��s���@��׾��f\��ul� /ProcSet [ /PDF /Text ] �Ϛā+��*��Q!r{�?B�i�i���\�į���]����Lez�ϓؚ��Ů{�:z��l�#�j�f�˄��f8�n d8���XƖ���%�vᛘ/'��B��8_:~�1;�p����D�����Hc����I���*��C�v8++�cMIn��]��^�ė��;����Ih�3�5��eԒb��n�e�-�iDgݖ��8�^dC�5��v;#)��X���V0��� ֆ&�FI��Hڢ��E*���?D���mV�M���!�*��e����o= z���I��L$(wrό:r:qu�B��|� $�Y@]�m�(T�J��)��ـ�o3V���-̵o$߼j&Qw�S+� (П�{����ABF��Z�XD/�����yA��"��e֯�tZp�/� ��0�ҭ��q�Q��P�HW�B�L�8`3��E��w�is����endstream Contents LIST OF CHARTERS v PREFACE xix I BASICS 1 1 INTRODUCTION 3 1.1 The Scope of Matrix Algebra 3 1.2 Using Computers for Matrix Arithmetic 4 1.3 A Matrix is an Array 5 1.4 Subscript Notation 6 1.5 Summation Notation 7 �P(qt�uo��m`�����G-Ϩ��Q��﹘�����y~�$Ly~{�� and ? %%EOF Review of Matrix Algebra for Regression A.Colin Cameron Department of Economics University of California - Davis May 8, 2008 Abstract This provides a review of key matrix algebra / linear algebra results. 1 Vector, Matrix and ensorT Algebra 1.1 Basic de nitions /Contents 3 0 R . Por ejemplo, considere el siste de ecuaciones lineales {3X + 4y + 3z = 0, 2x + Y - z = 0, 9x - 6y + 2z = O. x�}UMo�F��W�������7I�0Zj/M�L�D$R iG�������D�fg޼�};��� 63 0 obj <> endobj hޤ�mk�0ǿʽ��� J I�v���6���h���������N�7]��b�N��II?+� 5%Ax�y�a�|����aggl�l.b���E,����h��eap.I$��>U6�*��6lq>g�~6����,�W���+,��� /Filter /FlateDecode More complete results are given in e.g. ALGEBRA MATRICIAL 6.1 MATRICES Buscando formas para describir situaciones en matemáticas y economía, llegam al estudio de arreglos rectangulares de números. >> endstream endobj 64 0 obj <> endobj 65 0 obj <> endobj 66 0 obj <>stream endstream endobj startxref Food and Resource Economics Department University of Florida A Wiley-Interscience Publication JOHN WILEY & SONS, INC. stream The objective of this chapter is to provide a selective survey of both areas. 3 0 obj << 13 0 obj << >> endobj