�y�XUK��Yr�x�ط#� Weak sequential compactness, weak* convergence and the weak topology) \040Bounded Linear Maps) /A << /S /GoTo /D (chapter.16) >> 108 0 obj 3 0 obj << stream [0;1) satisfying the following properties for all x;y2Xand 2K 1. kx+ yk kxk+ kyk(triangle inequality) and 2. k xk= j jkxk(homogeneity), and we call a semi norm kka norm if it … \040Convexity) 248 0 obj << endobj /A << /S /GoTo /D (chapter.15) >> LEC # TOPICS; 1: Linear spaces, metric spaces, normed spaces : 2: … 84 0 obj Functional Analysis by Prof Mumtaz Ahmad. These notes are provided and composed by Mr. Muzammil Tanveer. Applications of Hahn-Banach) Handwritten notes of Functional Analysis by Mr. Tahir Hussain Jaffery of University of Peshawar. /Border[0 0 1]/H/I/C[1 0 0] << /S /GoTo /D (chapter.27) >> Functional Analysis. /Subtype /Link (Lecture 6. /A << /S /GoTo /D (chapter.11) >> /Type /Annot \040Hahn-Banach Theorem and Applications) endobj /Filter /FlateDecode /ProcSet [ /PDF ] << /S /GoTo /D (Item.111) >> \040Weak Convergence and Weak Topology) /Filter /FlateDecode 208 0 obj << /Border[0 0 1]/H/I/C[1 0 0] 129 0 obj 2 0 obj << >> endobj BSc Section /Border[0 0 1]/H/I/C[1 0 0] << /S /GoTo /D (chapter.6) >> endobj /A << /S /GoTo /D (part.1) >> /Subtype /Link (Lecture 24. 204 0 obj It seems that you're in Italy. Applications: solving some PDE's) /Font << /F15 4 0 R /F16 5 0 R >> \040Hilbert Spaces and Applications) endobj 200 0 obj 21 0 obj endobj endobj (Lecture 8. Its development started about eighty years ago, and nowadays functional analytic … 241 0 obj << 161 0 obj %PDF-1.5 /MediaBox [0 0 595.276 841.89] endobj (Homework I) Lecture Notes on Functional Analysis Kai-Seng Chou Department of Mathematics The Chinese University of Hong Kong Hong Kong May 29, 2014 29 0 obj Report Error, About Us << /S /GoTo /D (chapter.31) >> /ProcSet [ /PDF /Text ] )���j��*���)�; 7 0 obj << 205 0 obj >> endobj << /S /GoTo /D (chapter.26) >> CYBER DEAL: 50% off all Springer eBooks | Get this offer! /Subtype /Link /Parent 6 0 R /Border[0 0 1]/H/I/C[1 0 0] 181 0 obj The dual of an LCS) /MediaBox [0 0 612 792] endobj (Lecture 14. endobj /Subtype /Link 160 0 obj << /S /GoTo /D (chapter.11) >> Contributors, Except where otherwise noted, content on this wiki is licensed under the following license:CC Attribution-Noncommercial-Share Alike 4.0 International. They are based on the notes of Dr. Matt Daws, Prof. Jonathan R. Partington and Dr. David Salinger used in the previous years. Name. endobj << /S /GoTo /D (chapter.17) >> Some examples) endobj << /S /GoTo /D (chapter.21) >> >> endobj >> endobj << /S /GoTo /D (chapter.3) >> (Part 5. >> endobj NOTES ON FUNCTIONAL ANALYSIS, MAT 578, FALL 2010 JACK SPIELBERG 1. /Resources 1 0 R 17 0 obj Spaces of distributions) 136 0 obj Compact Maps) 210 0 obj << 232 0 obj << This chapter is of preparatory nature. (Comments and course information) /Subtype /Link Lecture notes files. << /S /GoTo /D (chapter.29) >> /Resources 218 0 R Fredholm alternative) << /S /GoTo /D (part.2) >> endobj /A << /S /GoTo /D (part.2) >> >> >> endobj /MediaBox [0 0 612 792] Note. xڝVKo�0��W�6�5�e��� �.�.�nM��.�[��GJ~�v���В(�?R�>,��}�*��[i��&ђIelb�eV[�,V?�ŷk-3�*��J��S&]z�`ey��U���e��W�`�s��J��H%�6���Nu"�꘰�$��LJo��릩Y^���*˥+Ҫ>��8���ݜ��K�p�9�h9D&�aNp���1��^>gB�<=��>HtYT]�r�:���I[�0e��y�"�mY-�����Cy�2V��Ī� �EJ�@V.$Ik| ���&�3�� �T�%��Ҥ�gh0�S�0 �I�E�&]�Y֭�V} /Type /Annot 65 0 obj (Part 9. 44 0 obj 96 0 obj >> endobj (Part 7. >> endobj /Border[0 0 1]/H/I/C[1 0 0] 28 0 obj 249 0 obj << << /S /GoTo /D (AMS.29) >> ���k��)�J�e�#~Ƅ��%�[�Xs]�����r�e���8���#��W—���>��CW�v��U�2(�%.g*dp9��f�WZ�-�QJ}j��xbP &Y�SS�^|�SH0܋�p�)�a�*J�T)�]��h\�Ϸ�K���8c����/W�]T����"~*���:87B�'�ADj�^!� 7?f��)+��3V��)n|��)$%ċ3t9��T�Ta�9�j�o�Y�&1�uT�&Jv;�u�ɫ]������UY���T���UN��I%'Қ^~�b�^�1 �&NAË)�ÆEk���lkȶn�>��ZM��nd��� oX�&��ܦ�z�6�&� )�8Z>���GL�#�癬�\A��ʿ�tO}�@5�k�ZO2���. The result of the process is a defined Functional Architecture with allocated system requirements that are traceable to each system function. (Lecture 22. 229 0 obj << 20 0 obj /Length 8 148 0 obj /Type /Annot endobj /A << /S /GoTo /D (chapter.5) >> (Lecture 19. endobj %PDF-1.4 185 0 obj FSc Section endobj 132 0 obj stream (gross), © 2020 Springer Nature Switzerland AG. �Lj�`�9�kr��rv��QM���bQ�2�$��V1�~��qSwi�������K��eE���.�؂�X�-��m{,���"zIߙ�zk��R�8X4y�����B��j��������B���8��ɵ,��0�;�~�`G�L�sa�K/Ƹ=��M�LX��yUe����r��}���T��5}$�h����Œ��3660�" 6�3�9���q֨w$���|��{�Ї*>���S^1�� 1 0 obj << << /S /GoTo /D (chapter.8) >> /Length 865 /Annots [ 222 0 R 223 0 R 224 0 R 225 0 R 226 0 R 227 0 R 228 0 R 229 0 R 230 0 R 231 0 R 232 0 R 233 0 R 234 0 R 235 0 R 236 0 R 237 0 R 238 0 R 239 0 R 240 0 R 241 0 R 242 0 R 243 0 R 244 0 R ] 246 0 obj << endobj endobj 176 0 obj 247 0 obj << Well prepared students can read it on their own. /Type /Annot 36 0 obj endobj These are supplementary notes for a course on functional analysis. /Type /Annot (Part 4. /Subtype /Link /Type /Annot Generally speaking, in functional analysis we study in nite dimensional vector spaces of functions and the linear operators between them by analytic methods. (Part 2. endobj endobj endobj 13 0 obj /Rect [71.004 281.779 318.293 294.398] /Length 277 (Hindustan Book Agency.) 238 0 obj << endobj Convex sets in a Banach space \(II\)) /Border[0 0 1]/H/I/C[1 0 0] /Subtype /Link 184 0 obj >> endobj >> endobj Bhatia, Rajendra. 33 0 obj endobj 37 0 obj >> endobj 141 0 obj %���� endobj The notes were first made for the course in 2004. Functional calculus and polar decomposition) xڵYK��� �ϯPnT����᭭ʌ�[�&�Jv�f�@K�1m���cl���n>JO��B ������/�0�`�8I�����8�0�+��Ż��j���TX�����;��I]�G�,�N�j_�UV�߮a�}W�n Gp����@����&�[�X�_���.��2/4�8������ xRo��_���?���UB-%�:�dDS��A����2�6ɷ�P!��m��ej��i��`���c�ц����'�P#�H%텠Z3�� [����{�d^��2� endobj /A << /S /GoTo /D (part.3) >> << /S /GoTo /D (part.4) >> /ProcSet [ /PDF /Text ] 100 0 obj 237 0 obj << (Homework II) Linear spaces and the Hahn Banach Theorem) 226 0 obj << /Rect [71.004 426.502 279.208 439.121] /Subtype /Link (Lecture 16. 180 0 obj /Rect [71.004 304.352 316.801 316.971] /D [219 0 R /XYZ 72 712.03 null] /Border[0 0 1]/H/I/C[1 0 0] 105 0 obj endobj �C��1'@j��p�HD��h��o�S)���f>���Z�m �(�Ш�W� (Lecture 9. 116 0 obj >> << /S /GoTo /D (chapter.24) >> endobj 24 0 obj << /S /GoTo /D (Item.173) >> >> endobj >> endobj /Filter /FlateDecode /A << /S /GoTo /D (chapter.2) >> 172 0 obj << /S /GoTo /D (part.6) >> /Border[0 0 1]/H/I/C[1 0 0] endobj %���� (Lecture 33. stream /Type /Annot /Border[0 0 1]/H/I/C[1 0 0] /Type /Annot endobj 233 0 obj << << /S /GoTo /D (chapter.30) >> (Lecture 25. Functional analysis: an introduction By Yuli Eidelman, Vitali D. Milman, Antonis Tsolomitis (AMS) Principles of functional analysis By Martin Schechter. >> endobj Notes on Functional Analysis by Rajendra Bhatia. 168 0 obj The notes are elementary assuming no prerequisites beyond knowledge of linear algebra and ordinary calculus (with ǫ-δ arguments). /Filter /FlateDecode 144 0 obj endobj << /S /GoTo /D (chapter.19) >> /Length 803 endobj 278 0 obj << Authors: endobj stream >> endobj (Lecture 27. /A << /S /GoTo /D (chapter.10) >> << /S /GoTo /D (chapter.23) >> Functional Analysis by S.Kesavan. 196 0 obj Matric Section endobj endobj 133 0 obj /Subtype /Link 40 0 obj (Lecture 11. endobj (Part 3. /Parent 217 0 R 218 0 obj << /A << /S /GoTo /D (chapter.14) >> Locally Convex Spaces and Spaces of Test Functions) 120 0 obj endobj /Font << /F26 211 0 R /F25 212 0 R /F27 213 0 R /F28 214 0 R /F15 215 0 R /F29 216 0 R >> 1 0 obj << These notes are a record of a one semester course on Functional Analysis given by the author to second year Master of Statistics students at the Indian Statistical Institute, New Delhi. x�M��N�0��} /Border[0 0 1]/H/I/C[1 0 0] ( Hindustan Book Agency.) (Lecture 13. /Font << /F23 6 0 R /F24 9 0 R /F19 12 0 R /F26 15 0 R /F28 18 0 R >> >> endobj 125 0 obj These notes are intended to familiarize the student with the basic concepts, principles and methods of functional analysis and its applications, and they are intended for senior undergraduate or beginning graduate students. It lls up a gap in elementary /Type /Page /Font << /F8 10 0 R >> /Subtype /Link endobj x�s /Subtype /Link /Border[0 0 1]/H/I/C[1 0 0] >> �������N��3����c�������S�i�����N�� DN6w~����!Dp�o��������}=�@�F��BLJ(H��vIr����.H�O�����B/%._����a�sO�/�{]��,-�J�C�S��������5�(�\�r'�8?�)p ~0�9g�ң�qO��ۃ�j�!-��� /Border[0 0 1]/H/I/C[1 0 0] 97 0 obj endobj 225 0 obj << endstream endobj << /S /GoTo /D (section*.1) >>